M.Zharkikh's personal site logo
Mail to site
Print version
News (RSS)
Colloid science / Piezodialysis / Experimental-theoretical problems of piezodialysis

Experimental-theoretical problems of piezodialysis

Zharkikh N.I., Shilov V.N.,
Dukhin S.S., Borkowskaya Y.B.

Further improvement in many areas of water technology (desalination, brackish water processing, concentration of industrial effluents and mine water, trapping salts of precious metals) associated with the development and improvement of membrane processes. Their most fundamental advantage in comparison, for example, desalination by distillation method in that they require much less energy. Such processes as reverse osmosis and electrodialysis already found widespread industrial application. The aim of this work is a theoretical consideration of the possibilities of a new, relatively poorly known membrane process – piezodialysis (PD).


Piezodialysis – the separation process with charged membranes, using the phenomenon of current flow. During the application of pressure to the membrane of a current flow, which transfers the ions from the high-pressure chamber (dilution) in the low-pressure chamber (concentration).

On the basis of the phenomenological theory of PD identified parameters of membranes, the most important for the successful implementation of the process: the concentration of the outgoing membrane solution (preferably not less than 1 mol / L), conversion factor (preferably not less than 0,8), the hydrodynamic permeability (preferably more than 10-6 cm / (sec atm)). The formulas derived on which we can determine the physical and technical characteristics of PD.

Briefly discussed the results of the study of mosaic membranes for PD. Indicated that synthesis of the mosaic membrane with an optimal subset of features – a very difficult experimental problem, the existing theoretical models of PD for mosaics operate poorly because of the complexity of their geometric structure.

In this connection it seems necessary to examine more closely the possibility of a batch version of PD, and especially to evaluate the properties of the available ion-exchange membranes on the proposed method. These estimations of some membranes with available literature data provide encouraging results.

It is therefore useful to carry out comprehensive measurements of the transport coefficients of membranes, which would give a more reliable basis for evaluation than the use of fragmentary published data.

The basic requirements for the design and mode of piezodialysis operation: dilution camera should be sufficiently thin in accordance with the requirement (56). The pressure at which the process proceeds, should be sufficient to satisfy the condition (55).


1. Гребенюк В. Д. Электродиализ. – Киев : Техніка, 1974. – 156 с.

2. Гребенюк В. Д., Певницкая М. В., Гнусин Н. П. Соотношение электрохимических свойств ионообменных смол и изготовление на их основе гетерогенных мембран. – Журн. приклад. химии, 1969, 42, № 3, с. 578 – 584.

3. Гроот С. де, Мазур П. Неравновесная термодинамика. – М.: Мир, 1964. – 456 с.

4. Духин С. С. Электропроводность и электрохимические свойства дисперсных систем. – Киев : Наук, думка, 1975. – 246 с.

5. Духин С. С., Дерягин Б. В. Электрофорез. – М.: Наука, 1976. – 326 с.

6. Дытнерский Ю. И. Обратный осмос и ультрафильтрация. – М.: Химия, 1978. – 348 с.

7. Лурье А. А. Сорбенты и хроматографические носители. – М.: Химия, 1972. – 308 с.

8. Маринский Я. А. Интерпретация ионообменных явлений. – В кн.: Ионный обмен [Под ред. Я. А. Маринского]. М., Мир, 1968, с. 1 – 75.

9. Николаев Н. И., Филимонова А. М., Туницкий Н. Н. Связь между электропроводностью и самодиффузией противоионов в ионитах и механизм переноса противоионов в них. – Журн. физ. химии, 1969, 43, № 5, с. 1249 – 1255.

10. Певницкая М. В., Козина А. А., Евсеев Н. Г. Электроосмотическая проницаемость ионных мембран. – Изв. СО АН СССР. Сер. хим. наук, 1974, № 9, вып. 4, с. 137 – 142.

11. Певницкая М. В., Козина А. А. Гидродинамическая проницаемость промышленных ионообменных мембран. – Журн. прикл. химии, 1974, 47, № 3, с. 583 – 590.

12. Середин Б. И., Николаев Н. И., Родин Н. Н. О связи между электропроводностью и самодиффузией в ионообменных мембранах различного типа. – Журн. физ. химии, 1971, 45, № 7, с. 1751 – 1753.

13. Фридрихсберг Д. А. Курс коллоидной химии. – Л.: Химия, 1974. – 368 с.

14. Юхновский И. Р. Некоторые вопросы современного состояния теории равновесных систем заряженных частиц. – Укр. физ. журн., 1969, 14, № 5, с. 705 – 711.

15. Юхновский И. Р. Выделение системы отсчета в методе коллективных переменных. – Киев, 1974. – 33 с – (ИТФ АН УССР. Препринт ИТФ АН УССР 74 – 149).

16. Dresner L. Ionic transport through ion-exchange membranes in hyperfiltration and piezodialysis. – Desalination, 1974, 15, N 2, p. 109 – 127.

17. Foley J., Klinovski R., Mears P. Differential conductance coefficients in a cation-exchange membranes. – Proc. Roy. Soc. London A, 1974, 336, N 2, p. 327 – 336.

18. Gardner C. R., Weinstein J. N., Caplan S. Transport properties of charge-mosaic membranes. III. Piesodialysis. – Desalination, 1973, 12, N 1, p. 19 – 33.

19. Hoffer E., Kedem O. Hyperfiltration in charged membranes. – J. Phys. Chem., 1972, 76, N 24, p. 3638 – 3641.

20. Leitz F. B. Research on piezodialysis. – Washington, 1974. – Pt. 4. 110 p. (Office Saline Water U. S. Dep. Interior; Res. Develop. Rept. N 988).

21. Leitz F. В. Piezodialysis. – In Membrane separation processes/Ed. by P. Mears. Amsterdam : Elsevier, 1976, p. 261 – 295.

22. Leitz F. В., Shorr J. Development of membranes and resins for piezodialysis. – Desalination, 1974, 14, N !, p. 11 – 20.

23. Lopatin G., Neweu H., Bishop A. et al. Ionic bloc copolimers as piezodialysis membranes. – Washington, 1971. – 116 p. – (Office Saline Water U.S. Dep. Interior; Res. Develop. Rept. N 690).

24. Paterson R., Gardner C. R. Comparison of the transport properties of normal and expanded forms of a cation-exchange membrane by use of an irreversible thermodynamic approach. – J. Chem. Soc. Faraday Trans. Pt I, 1975, N 11, p. 2030 – 2040.

25. Weinstein J. N., Bunov В., Yanowiz I. et al. Water transport in charged-mosaic membranes. – Polimer preprints, 1968. 9, N 8, p. 1564 – 1570.

26. Weinstein J. N., Bunov В. J., Caplan S. R. Transport properties of charge-mosaic membranes. I. Theoretical model. – Desalination, 1972, 11, N 3, p. 341 – 377.

27. Weinstein J. N., Caplan S. R. Charge-mosaic membranes. – Washington, 1974, – 340 p. (Office Saline Water US Dep. Interior; Res. Develop. Rept. N 987).

28. Weinstein J. N., Misra B. M., Kalif D., Caplan S. R. Transport properties of charge-mosaic membranes. II. Experimental studies. – Desalination, 1973, 12, N 1, p. 1 – 18.

29. Yamabe J., Umesalta K., Yoshida S. et al. Piezodialysis : styrene-butadiene copolymer membranes. – Desalination, 1974, 15, N 1, p. 127 – 135.

Colloid and water chemistry institite, Academy of sciences of Ukraine, Kyiv

Received 27.11.1979.

Published : "Физика молекул" (Molecular physics), Kyiv, 1980, vol. 9, pp. 89 – 110.

Full text in russian language.

Download free full text of the work ( 2.74 Mbytes)

Previous article | List of articles | Next article

Please this page? Help us to develop this site!

© 1978 – 2018 N.I.Zharkikh

Reprinting of articles from site are encouraged while
reference (hyperlink) to my site is provided

Site powered by

Load count : 1872

Modified : 25.08.2013

If you look up the type error
on this page, please select it
by mouse and press Ctrl+Enter.